Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 277
Filtrar
1.
PLoS One ; 19(3): e0300426, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38526998

RESUMO

When males have large sperm, they may become sperm limited and mating dynamics may be affected. One such species is Zaprionus indianus, a drosophilid that is an introduced pest species in the Americas. We examined aspects of mating behavior in Z. indianus to determine the senses necessary for mating and measure female and male remating habits. We found that vision is necessary for successful copulation, but wings, which produce courtship song, are not needed. Males need their foretarsi to successfully copulate and although the foretarsi may be needed for chemoreception, their role in hanging on to the female during copulation may be more important for successful mating. Females that mate once run out of sperm in approximately five days, although mating a second time greatly increases offspring production. Females do not seem to exert pre-mating choice among males with respect to mating with a familiar versus a novel male. Males are not capable of mating continuously and fail to produce offspring in many copulations. Overall, females of this species benefit from polyandry, providing an opportunity to study sexual selection in females. In addition, the dynamics of male competition for fertilizing eggs needs to be studied.


Assuntos
Drosophilidae , Comportamento Sexual Animal , Animais , Masculino , Feminino , Sêmen , Reprodução , Espermatozoides , Copulação
2.
J Econ Entomol ; 117(2): 516-523, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38280183

RESUMO

Microplastics (MPs) have become a prominent environmental concern due to their ubiquity in various ecosystems and widespread distribution through multiple channels. In this study, the oral effects of 2,000 mesh polytetrafluoroethylene (PTFE) microplastics were tested against Drosophila melanogaster (Meigen), at concentrations of 0, 0.1, 1, 10, and 20. After exposure to a microplastic-containing medium for 20 days, energy metabolism, fecundity, spontaneous movement, and sleeping time were measured. The study results showed that glucose levels in male flies were significantly reduced after exposure to PTFE-MPs. Measurement of lipid and protein levels indicated an increase in males but decrease in females, whereas these changes were not statistically significant. Reduction in sleep time was also observed, especially in males at the concentration of 20 g/l. Our study indicates that chronic exposure of PTFE-MPs can change energy metabolism and the amount of sleep on D. melanogaster in a sex dependent and dose dependent way. The results of our study are hoped to contribute to a better understanding of the effects of microplastics as new pollutants on insects.


Assuntos
Drosophila melanogaster , Drosophilidae , Feminino , Masculino , Animais , Microplásticos/farmacologia , Plásticos/farmacologia , Politetrafluoretileno/farmacologia , Ecossistema
3.
Mol Phylogenet Evol ; 191: 107978, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38013068

RESUMO

The family Drosophilidae is one of the most important model systems in evolutionary biology. Thanks to advances in high-throughput sequencing technology, a number of molecular phylogenetic analyses have been undertaken by using large data sets of many genes and many species sampled across this family. Especially, recent analyses using genome sequences have depicted the family-wide skeleton phylogeny with high confidence. However, the taxon sampling is still insufficient for minor lineages and non-Drosophila genera. In this study, we carried out phylogenetic analyses using a large number of transcriptome-based nucleotide sequences, focusing on the largest, core tribe Drosophilini in the Drosophilidae. In our analyses, some noise factors against phylogenetic reconstruction were taken into account by removing putative paralogy from the datasets and examining the effects of missing data, i.e. gene occupancy and site coverage, and incomplete lineage sorting. The inferred phylogeny has newly resolved the following phylogenetic positions/relationships at the genomic scale: (i) the monophyly of the subgenus Siphlodora including Zaprionus flavofasciatus to be transferred therein; (ii) the paraphyly of the robusta and melanica species groups within a clade comprised of the robusta, melanica and quadrisetata groups and Z. flavofasciatus; (iii) Drosophila curviceps (representing the curviceps group), D. annulipes (the quadrilineata subgroup of the immigrans group) and D. maculinotata clustered into a clade sister to the Idiomyia + Scaptomyza clade, forming together the expanded Hawaiian drosophilid lineage; (iv) Dichaetophora tenuicauda (representing the lineage comprised of the Zygothrica genus group and Dichaetophora) placed as the sister to the clade of the expanded Hawaiian drosophilid lineage and Siphlodora; and (v) relationships of the subgenus Drosophila and the genus Zaprionus as follows: (Zaprionus, (the quadrilineata subgroup, ((D. sternopleuralis, the immigrans group proper), (the quinaria radiation, the tripunctata radiation)))). These results are to be incorporated into the so-far published phylogenomic tree as a backbone (constraint) tree for grafting much more species based on sequences of a limited number of genes. Such a comprehensive, highly confident phylogenetic tree with extensive and dense taxon sampling will provide an essential framework for comparative studies of the Drosophilidae.


Assuntos
Drosophilidae , Animais , Drosophilidae/genética , Filogenia , Transcriptoma , Drosophila/genética , Evolução Biológica , Esqueleto
4.
J Insect Sci ; 23(5)2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37864807

RESUMO

The African fig fly, Zaprionus indianus (Gupta), is a generalist fruit fly that typically breeds in decaying fruits from over 70 plant species. The species has spread globally from its native range in tropical Africa, becoming an invasive pest on ripening figs in Brazil. First reported in the United States in 2005 in Florida, Z. indianus has since been documented as far north as Canada and is hypothesized to recolonize northwards from southern refugia each year. We sampled drosophilid communities over the growing season at 2 orchards in Virginia from 2020 to 2022 and 11 orchards along the East Coast during the fall of 2022 to quantify the abundance of Z. indianus relative to other drosophilids across locations, seasons, and fruit crops. Massachusetts had the northernmost population, with no Z. indianus detected in Maine and no correlation between latitude and relative abundance. Variation in Z. indianus relative abundance was high between nearby orchards and abundance was higher on peaches relative to apples within orchards. Comparisons of seasonal abundance curves between 2 Virginia orchards showed similar dynamics across years with individuals first detected around July and becoming absent around December, with peaks in late summer and mid-fall. The variation in seasonal and latitudinal abundance shown here highlights a need for broader sampling to accurately characterize the range, spread, and environmental tolerances of Z. indianus in North America.


Assuntos
Drosophilidae , Humanos , Animais , Drosophila , Virginia , Frutas , Brasil , Florida
5.
Sci Rep ; 13(1): 15202, 2023 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-37709909

RESUMO

The ability of animals to perceive and respond to sensory information is essential for their survival in diverse environments. While much progress has been made in understanding various sensory modalities, the sense of hygrosensation, which involves the detection and response to humidity, remains poorly understood. In this study, we focused on the hygrosensory, and closely related thermosensory, systems in the vinegar fly Drosophila melanogaster to unravel the molecular profile of the cells of these senses. Using a transcriptomic analysis of over 37,000 nuclei, we identified twelve distinct clusters of cells corresponding to temperature-sensing arista neurons, humidity-sensing sacculus neurons, and support cells relating to these neurons. By examining the expression of known and novel marker genes, we validated the identity of these clusters and characterized their gene expression profiles. We found that each cell type could be characterized by a unique expression profile of ion channels, GPCR signaling molecules, synaptic vesicle cycle proteins, and cell adhesion molecules. Our findings provide valuable insights into the molecular basis of hygro- and thermosensation. Understanding the mechanisms underlying hygro- and thermosensation may shed light on the broader understanding of sensory systems and their adaptation to different environmental conditions in animals.


Assuntos
Ascomicetos , Drosophilidae , Animais , Drosophila melanogaster/genética , Ácido Acético , Neurônios , Núcleo Celular
6.
BMC Ecol Evol ; 23(1): 50, 2023 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-37700252

RESUMO

No phenotypic trait evolves independently of all other traits, but the cause of trait-trait coevolution is poorly understood. While the coevolution could arise simply from pleiotropic mutations that simultaneously affect the traits concerned, it could also result from multivariate natural selection favoring certain trait relationships. To gain a general mechanistic understanding of trait-trait coevolution, we examine the evolution of 220 cell morphology traits across 16 natural strains of the yeast Saccharomyces cerevisiae and the evolution of 24 wing morphology traits across 110 fly species of the family Drosophilidae, along with the variations of these traits among gene deletion or mutation accumulation lines (a.k.a. mutants). For numerous trait pairs, the phenotypic correlation among evolutionary lineages differs significantly from that among mutants. Specifically, we find hundreds of cases where the evolutionary correlation between traits is strengthened or reversed relative to the mutational correlation, which, according to our population genetic simulation, is likely caused by multivariate selection. Furthermore, we detect selection for enhanced modularity of the yeast traits analyzed. Together, these results demonstrate that trait-trait coevolution is shaped by natural selection and suggest that the pleiotropic structure of mutation is not optimal. Because the morphological traits analyzed here are chosen largely because of their measurability and thereby are not expected to be biased with regard to natural selection, our conclusion is likely general.


Assuntos
Drosophilidae , Saccharomyces cerevisiae , Animais , Saccharomyces cerevisiae/genética , Simulação por Computador , Deleção de Genes , Mutação
8.
Zootaxa ; 5278(2): 201-238, 2023 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-37518286

RESUMO

The zeylanica group is one of the six species groups of the anthophilic genus Colocasiomyia de Meijere in the family Drosophilidae. In addition to two known species, five morphospecies have been recognized as members of this species group but left undescribed formally. In this study, species delimitation of these putatively new species was determined by barcoding of the mitochondrial COI (cytochrome c oxydase subunit I) gene and morphological comparison. Phylogenetic relationships within the genus Colocasiomyia were inferred by a cladistic analysis of 89 morphological characters. Based on the results of these analyses, we redefined the zeylanica species group and established two subgroups within it: the zeylanica subgroup comprised of C. zeylanica, C. nepalensis, C. pinangae sp. nov., C. besaris sp. nov. and C. luciphila sp. nov., and the oligochaeta subgroup of C. oligochaeta sp. nov. and C. grimaldii sp. nov. In addition, we briefly address the anthophilic habits of drosophilid flies using palm (Arecaceae) inflorescences, especially of the zeylanica group, compiling scattered collection records from the Oriental and Papuan regions.


Assuntos
Dípteros , Drosophilidae , Animais , Drosophilidae/genética , Filogenia , Inflorescência , Mitocôndrias
9.
Genes (Basel) ; 14(6)2023 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-37372420

RESUMO

To address the limited number of mitochondrial genomes (mitogenomes) in the subfamily Steganinae (Diptera: Drosophilidae), we assembled 12 complete mitogenomes for six representative species in the genus Amiota and six representative species in the genus Phortica. We performed a series of comparative and phylogenetic analyses for these 12 Steganinae mitogenomes, paying special attention to the commonalities and differences in the D-loop sequences. Primarily determined by the lengths of the D-loop regions, the sizes of the Amiota and Phortica mitogenomes ranged from 16,143-16,803 bp and 15,933-16,290 bp, respectively. Our results indicated that the sizes of genes and intergenic nucleotides (IGNs), codon usage and amino acid usage, compositional skewness levels, evolutionary rates of protein-coding genes (PCGs), and D-loop sequence variability all showed unambiguous genus-specific characteristics and provided novel insights into the evolutionary implications between and within Amiota and Phortica. Most of the consensus motifs were found downstream of the D-loop regions, and some of them showed distinct genus-specific patterns. In addition, the D-loop sequences were phylogenetically informative as the data sets of PCGs and/or rRNAs, especially within the genus Phortica.


Assuntos
Drosophilidae , Genoma Mitocondrial , Animais , Drosophilidae/genética , Filogenia , Genoma Mitocondrial/genética , Nucleotídeos/genética , Aminoácidos/genética
10.
Proc Natl Acad Sci U S A ; 120(19): e2211210120, 2023 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-37126721

RESUMO

The degree to which developmental biases affect trait evolution is subject to much debate. Here, we first quantify fluctuating asymmetry as a measure of developmental variability, i.e., the propensity of developmental systems to create some phenotypic variants more often than others, and show that it predicts phenotypic and standing genetic variation as well as deep macroevolutionary divergence in wing shape in sepsid flies. Comparing our data to the findings of a previous study demonstrates that developmental variability in the sepsid fly Sepsis punctum strongly aligns with mutational, standing genetic, and macroevolutionary variation in the Drosophilidae--a group that diverged from the sepsid lineage ca. 64 My ago. We also find that developmental bias in S. punctum wing shape aligns with the effects of allometry, but less so with putatively adaptive thermal plasticity and population differentiation along latitude. Our findings demonstrate that developmental bias in fly wings predicts evolvability and macroevolutionary trajectories on a much greater scale than previously appreciated but also suggest that causal explanations for such alignments may go beyond simple constraint hypotheses.


Assuntos
Evolução Biológica , Drosophilidae , Animais , Mutação , Fenótipo , Asas de Animais
11.
Zootaxa ; 5250(1): 1-109, 2023 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-37044741

RESUMO

A total of 58 (eight known and 50 new) species of the subgenus Stegana (Steganina) from China were surveyed and (re)described: S. (S.) bacilla Chen & Aotsuka, 2004, S. (S.) belokobylskiji Sidorenko, 1997, S. (S.) hirticeps Wang, Gao, & Chen, 2013, S. (S.) izu Sidorenko, 1997, S. (S.) kanmiyai Okada & Sidorenko, 1992, S. (S.) masanoritodai Okada & Sidorenko, 1992, S. (S.) maymyo Sidorenko, 1997, stat. rev., S. (S.) nigripes Zhang & Chen, 2015, S. (S.) alafoliacea Zhang & Chen, sp. nov., S. (S.) baoxing Li & Chen, sp. nov., S. (S.) bibarbata Li & Chen, sp. nov., S. (S.) bimai Cui & Chen, sp. nov., S. (S.) cinereipecta Zhang & Chen, sp. nov., S. (S.) cardua Cui & Chen, sp. nov., S. (S.) cordhirsuta Wang & Chen, sp. nov., S. (S.) cornuta Li & Chen, sp. nov., S. (S.) cucullata Li & Chen, sp. nov., S. (S.) cultella Cui & Chen, sp. nov., S. (S.) curvitabulata Cui & Chen, sp. nov., S. (S.) daiya Cui & Chen, sp. nov., S. (S.) dendrophila Zhang & Chen, sp. nov., S. (S.) flabella Li & Chen, sp. nov., S. (S.) flavipes Li & Chen, sp. nov., S. (S.) formosa Zhang & Chen, sp. nov., S. (S.) fusca Li & Chen, sp. nov., S. (S.) fuscipes Li & Chen, sp. nov., S. (S.) glaucopalpula Cui & Chen, sp. nov., S. (S.) haba Zhang & Chen, sp. nov., S. (S.) hirticlavata Cui & Chen, sp. nov., S. (S.) iaspidea Zhang & Chen, sp. nov., S. (S.) idiasta Cui & Chen, sp. nov., S. (S.) kanda Cui & Chen, sp. nov., S. (S.) labao Li & Chen, sp. nov., S. (S.) lancang Li & Chen, sp. nov., S. (S.) latifoliacea Wang & Chen, sp. nov., S. (S.) liusanjieae Li & Chen, sp. nov., S. (S.) magniflava Cui & Chen, sp. nov., S. (S.) mailangang Li & Chen, sp. nov., S. (S.) marenubila Cui & Chen, sp. nov., S. (S.) menghai Zhang & Chen, sp. nov., S. (S.) menglian Li & Chen, sp. nov., S. (S.) minutiflava Li & Chen, sp. nov., S. (S.) multiprocera Li & Chen, sp. nov., S. (S.) nayun Li & Chen, sp. nov., S. (S.) nigridentata Wang & Chen, sp. nov., S. (S.) nigripalpula Cui & Chen, sp. nov., S. (S.) otphylla Cui & Chen, sp. nov., S. (S.) radiciflava Zhang & Chen, sp. nov., S. (S.) rava Cui & Chen, sp. nov., S. (S.) sciophila Li & Chen, sp. nov., S. (S.) septencolorata Li & Chen, sp. nov., S. (S.) serrata Zhang & Chen, sp. nov., S. (S.) silvestrella Zhang & Chen, sp. nov., S. (S.) simola Cui & Chen, sp. nov., S. (S.) yani Li & Chen, sp. nov., S. (S.) yixiang Zhang & Chen, sp. nov., S. (S.) zaduo Cui & Chen, sp. nov., and S. (S.) zhuoma Cui & Chen, sp. nov. We also provided a complete list of Chinese Steganina species together with their geographical distributions. In addition, the majority of currently available DNA barcode (partial sequence of the mitochondrial cytochrome c oxidase subunit I (COI) gene) sequences of this subgenus (435 sequences of 102 spp.) were employed in a molecular analysis for species delimitation. Taken together, morphology- and molecular-based species delimitation results reached a consensus for an overwhelming majority of these Steganina species (98 of 102 spp.).


Assuntos
Drosophilidae , Animais , Drosophilidae/genética , Código de Barras de DNA Taxonômico , Filogenia , China , DNA
13.
Environ Sci Pollut Res Int ; 30(6): 16510-16524, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36190624

RESUMO

The spatial distribution of fig trees infected by Zaprionus indianus (ZI) disease, an invasive pest, was analyzed as a control solution to determine the prone area of their growth and cultivation prevention in Southwest Iran. With this aim, the study presented the use of 9 suitability variables for fig tree cultivation mapping in 3 main steps: (i) pre-processing data of each input variable with fuzzy membership function, (ii) land suitability mapping (LSM) by using the pair-wise comparison matrix of analytical hierarchy process (AHP) method and Geographical Information System (GIS) technique, (iii) exclusion layers of Zaprionus indianus from the temperature data and growing degree days (GDD) (from April to October) with the support of inverse distance weighting (IDW) method. The results show that the central regions and parts of the east and northwest of the region (16%) are more suitable for fig cultivation. Compared to 7 growth periods, the insect is more active in the southern parts of the region than in the northern parts. Therefore, it is possible to cultivate figs with high yield in parts of the region where the land is suitable for growing this crop with the lowest activity of ZI. The overlay results show that the suitability distribution of fig cultivation in high and very high levels is mainly in the central regions (13,300 km2, 10%), parts of the east (5320 km2, 4%), and northwest (2660 km2, 2%) of the region. The proposed approach can be useful for management, planners, and local people in the development of agricultural production areas.


Assuntos
Drosophilidae , Ficus , Animais , Humanos , Árvores , Processo de Hierarquia Analítica , Agricultura
14.
Zootaxa ; 5374(1): 35-50, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-38220874

RESUMO

The tripunctata group falls under the subgenus Drosophila Falln, 1823 of the genus Drosophila Falln, 1823, and is composed of four subgroups and 17 species not assigned to subgroups. This group is widely distributed throughout tropical regions and is predominantly found in preserved forest environments. With a predicted high number of cryptic species, the occurrence of intraspecific morphological polymorphisms made it difficult to establish lines in the laboratory. The capture of males for comparison of the terminalia makes it hard to identify and delimit species; however, these difficulties can be overcome through the use of techniques such as searching for species in naturally occurring places, establishing isofemale lines in the laboratory, or using molecular techniques. In this work, we search for imagoes of species of the tripunctata group over present fallen flowers of the Lecythidaceae on the ground of the Amazon rainforest. The collected individuals were morphologically and molecularly analyzed. This species is described here under the binomial Drosophila lecythus sp. nov.


Assuntos
Dípteros , Drosophilidae , Humanos , Masculino , Animais , Drosophila , Floresta Úmida
15.
Proc Biol Sci ; 289(1986): 20221938, 2022 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-36350206

RESUMO

Herbivorous insects are extraordinarily diverse, yet are found in only one-third of insect orders. This skew may result from barriers to plant colonization, coupled with phylogenetic constraint on plant-colonizing adaptations. The plant-penetrating ovipositor, however, is one trait that surmounts host plant physical defences and may be evolutionarily labile. Ovipositors densely lined with hard bristles have evolved repeatedly in herbivorous lineages, including within the Drosophilidae. However, the evolution and genetic basis of this innovation has not been well studied. Here, we focused on the evolution of this trait in Scaptomyza, a genus sister to Hawaiian Drosophila, that contains a herbivorous clade. Our phylogenetic approach revealed that ovipositor bristle number increased as herbivory evolved in the Scaptomyza lineage. Through a genome-wide association study, we then dissected the genomic architecture of variation in ovipositor bristle number within S. flava. Top-associated variants were enriched for transcriptional repressors, and the strongest associations included genes contributing to peripheral nervous system development. Individual genotyping supported the association at a variant upstream of Gαi, a neural development gene, contributing to a gain of 0.58 bristles/major allele. These results suggest that regulatory variation involving conserved developmental genes contributes to this key morphological trait involved in plant colonization.


Assuntos
Drosophilidae , Animais , Drosophilidae/genética , Herbivoria/genética , Filogenia , Estudo de Associação Genômica Ampla , Drosophila/genética , Genômica
16.
PLoS One ; 17(10): e0274292, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36197946

RESUMO

The schizophoran superfamily Ephydroidea (Diptera: Cyclorrhapha) includes eight families, ranging from the well-known vinegar flies (Drosophilidae) and shore flies (Ephydridae), to several small, relatively unusual groups, the phylogenetic placement of which has been particularly challenging for systematists. An extraordinary diversity in life histories, feeding habits and morphology are a hallmark of fly biology, and the Ephydroidea are no exception. Extreme specialization can lead to "orphaned" taxa with no clear evidence for their phylogenetic position. To resolve relationships among a diverse sample of Ephydroidea, including the highly modified flies in the families Braulidae and Mormotomyiidae, we conducted phylogenomic sampling. Using exon capture from Anchored Hybrid Enrichment and transcriptomics to obtain 320 orthologous nuclear genes sampled for 32 species of Ephydroidea and 11 outgroups, we evaluate a new phylogenetic hypothesis for representatives of the superfamily. These data strongly support monophyly of Ephydroidea with Ephydridae as an early branching radiation and the placement of Mormotomyiidae as a family-level lineage sister to all remaining families. We confirm placement of Cryptochetidae as sister taxon to a large clade containing both Drosophilidae and Braulidae-the latter a family of honeybee ectoparasites. Our results reaffirm that sampling of both taxa and characters is critical in hyperdiverse clades and that these factors have a major influence on phylogenomic reconstruction of the history of the schizophoran fly radiation.


Assuntos
Drosophilidae , Ácido Acético , Animais , Drosophilidae/genética , Filogenia
17.
Environ Entomol ; 51(5): 989-997, 2022 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-36124736

RESUMO

Annona senegalensis Pers. is a shrub of tropical countries that, during the fruiting period, harbor many insects. All parts of the plant are used and exploited in traditional medicine, food, and firewood. Our study aimed at evaluating the diversity of insects associated with the different phenological stages of A. senegalensis fruits in two phytogeographic zones of Burkina Faso. Sampling was carried out on flowers, green fruits, ripe fruits, and decayed fruits of A. senegalensis. For the first time, a total of 48 insects species belonging to 6 orders and 23 families were identified. These orders were Orthoptera, Hemiptera, Hymenoptera, Coleoptera, Lepidoptera, and Diptera. Our data indicated that the diversity of insect species varies according to the stages of development of the fruit (P = 0.017) and according to the site (P = 2.2e-16). Among these insects, Curculionidae (Endaeus spp.) predominate on flowers, are known to be pollinators, and Formicidae (Messor galla Mayr, [Hymenoptera: Formicidae], Trichomyrmex abyssinicus Forel, [Hymenoptera: Formicidae], and Crematogaster sp.) and Tettigometridae (Hilda undata Walker, [Hemiptera: Tettigometridae]) are suspected to have mutualistic relationships on green fruits. Potential pests belonging to the Scarabaeidae (Pachnoda spp., Polybaphes spp., and Xeloma Maura Boheman, [Coleoptera: Scarabaeidae]), Drosophilidae (Zaprionus indianus Gupta, [Diptera: Drosophilidae]), and Nitidulidae (Carpophilus nepos Murray, [Coleoptera: Nitidulidae]) are associated with ripe and decayed fruits. The data in this study highlight the diversity in terms of pollinators that ensure the fruit production and Formicidae known to protect A. senegalensis against potential pests. These data provide valuable information in terms of valuation of this plant.


Assuntos
Annona , Annonaceae , Besouros , Drosophilidae , Hemípteros , Himenópteros , Magnoliopsida , Animais , Burkina Faso , Insetos , Frutas
18.
Dev Genes Evol ; 232(5-6): 89-102, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35939093

RESUMO

The origin, diversification, and secondary loss of sexually dimorphic characters are common in animal evolution. In some cases, structurally and functionally similar traits have evolved independently in multiple lineages. Prominent examples of such traits include the male-specific grasping structures that develop on the front legs of many dipteran insects. In this report, we describe the evolution and development of one of these structures, the male-specific "sex brush." The sex brush is composed of densely packed, irregularly arranged modified bristles and is found in several distantly related lineages in the family Drosophilidae. Phylogenetic analysis using 250 genes from over 200 species provides modest support for a single origin of the sex brush followed by many secondary losses; however, independent origins of the sex brush cannot be ruled out completely. We show that sex brushes develop in very similar ways in all brush-bearing lineages. The dense packing of brush hairs is explained by the specification of bristle precursor cells at a near-maximum density permitted by the lateral inhibition mechanism, as well as by the reduced size of the surrounding epithelial cells. In contrast to the female and the ancestral male condition, where bristles are arranged in stereotypical, precisely spaced rows, cell migration does not contribute appreciably to the formation of the sex brush. The complex phylogenetic history of the sex brush can make it a valuable model for investigating coevolution of sex-specific morphology and mating behavior.


Assuntos
Evolução Biológica , Drosophilidae , Animais , Masculino , Feminino , Filogenia , Drosophilidae/genética , Drosophila melanogaster/genética , Fenótipo , Caracteres Sexuais
19.
Proc Biol Sci ; 289(1976): 20220308, 2022 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-35673862

RESUMO

The accumulation of trehalose has been suggested as a mechanism underlying insect cross-tolerance to cold/freezing and drought. Here we show that exposing diapausing larvae of the drosophilid fly, Chymomyza costata to dry conditions significantly stimulates their freeze tolerance. It does not, however, improve their tolerance to desiccation, nor does it significantly affect trehalose concentrations. Next, we use metabolomics to compare the complex alterations to intermediary metabolism pathways in response to three environmental factors with different ecological meanings: environmental drought (an environmental stressor causing mortality), decreasing ambient temperatures (an acclimation stimulus for improvement of cold hardiness), and short days (an environmental signal inducing diapause). We show that all three factors trigger qualitatively similar metabolic rearrangement and a similar phenotypic outcome-improved larval freeze tolerance. The similarities in metabolic response include (but are not restricted to) the accumulation of typical compatible solutes and the accumulation of energy-rich molecules (phosphagens). Based on these results, we suggest that transition to metabolic suppression (a state in which chemical energy demand is relatively low but need for stabilization of macromolecules is high) represents a common axis of metabolic pathway reorganization towards accumulation of non-toxic cytoprotective compounds, which in turn stimulates larval freeze tolerance.


Assuntos
Drosophilidae , Secas , Aclimatação/fisiologia , Animais , Temperatura Baixa , Congelamento , Insetos , Larva/fisiologia , Trealose
20.
Parasit Vectors ; 15(1): 200, 2022 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-35698211

RESUMO

BACKGROUND: Some species of drosophilid flies belonging to the genus Phortica feed on ocular secretions of mammals, acting as biological vectors of the zoonotic eyeworm Thelazia callipaeda. This study describes an effective breeding protocol of Phortica variegata and Phortica oldenbergi in insectary conditions. METHODS: Alive gravid flies of P. oldenbergi, P. variegata and Phortica semivirgo were field collected in wooded areas of Lazio region (Italy) and allowed to oviposit singularly to obtain isofamilies. Flies were maintained in ovipots (200 ml) with a plaster-covered bottom to maintain high humidity level inside. Adult feeding was guaranteed by fresh apples and a liquid dietary supplement containing sodium chloride and mucin proteins, while larval development was obtained by Drosophila-like agar feeding medium. The breeding performances of two media were compared: a standard one based on cornmeal flour and an enriched medium based on chestnut flour. All conditions were kept in a climatic chamber with a photoperiod of 14:10 h light:dark, 26 ± 2 °C and 80 ± 10% RH. RESULTS: From a total of 130 field-collected Phortica spp., three generations (i.e. F1 = 783, F2 = 109, F3 = 6) were obtained. Phortica oldenbergi was the species with highest breeding performance, being the only species reaching F3. Chestnut-based feeding medium allowed higher adult production and survival probability in both P. oldenbergi and P. variegata. Adult production/female was promising in both species (P. oldenbergi: 13.5 F1/f; P. variegata: 4.5 F1/f). CONCLUSIONS: This standardized breeding protocol, based on controlled climatic parameters and fly densities, together with the introduction of an enriched chestnut-based feeding medium, allowed to investigate aspects of life history traits of Phortica spp. involved in the transmission of T. callipaeda. Obtaining F3 generation of these species for the first time paved the road for the establishment of stable colonies, an essential requirement for future studies on these vectors in controlled conditions.


Assuntos
Drosophilidae , Infecções Oculares Parasitárias , Infecções por Spirurida , Thelazioidea , Animais , Cruzamento , Drosophila , Feminino , Loa , Mamíferos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...